If $\cos \,x = \frac{{2\cos y - 1}}{{2 - \cos y}},x,\,y\, \in \,\left( {0,\pi } \right),$ then $tan(x/2)cot(y/2) =$
$\sqrt 2$
$\sqrt 3$
$1/\sqrt 2$
$1/\sqrt 3$
Number of solutions of the equation $2^x + x = 2^{sin \ x} + \sin x$ in $[0,10\pi ]$ is -
If $\cos A\sin \left( {A - \frac{\pi }{6}} \right)$ is maximum, then the value of $A$ is equal to
The equation, $sin^2 \theta - \frac{4}{{{{\sin }^3}\,\,\theta \,\, - \,\,1}} = 1$$ -\frac{4}{{{{\sin }^3}\,\,\theta \,\, - \,\,1}}$ has :
If $2\sin \theta + \tan \theta = 0$, then the general values of $\theta $ are
Find the principal and general solutions of the equation $\cot x=-\sqrt{3}$